Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions.
نویسندگان
چکیده
A capsular polysaccharide from Escherichia coli K5 was previously found to have the same structure, [-(4)beta GlcA(1)----(4)alpha GlcNAc(1)-]n, as that of the non-sulphated precursor polysaccharide in heparin biosynthesis [Vann, Schmidt, Jann & Jann (1981) Eur. J. Biochem. 116, 359-364]. The K5 polysaccharide was N-deacetylated (by hydrazinolysis) and N-sulphated, and was then incubated with detergent-solubilized enzymes from a heparin-producing mouse mastocytoma, in the presence of adenosine 3'-phosphate 5'-phospho[35S] sulphate ([35S]PAPS). Structural analysis of the resulting 35S-labelled polysaccharide revealed the formation of all the major disaccharide units found in heparin. The identification of 2-O-[35S]sulphated IdoA (L-iduronic acid) as well as 6-O-[35S]sulphated GlcNSO3 units demonstrated that the modified K5 polysaccharide served as a substrate in the hexuronosyl C-5-epimerase and the major O-sulphotransferase reactions involved in the biosynthesis of heparin. The GlcA units of the native (N-acetylated) E. coli polysaccharide were attacked by the epimerase only when PAPS was present in the incubations, whereas those of the chemically N-sulphated polysaccharide were epimerized also in the absence of PAPS, in accord with the notion that N-sulphate groups are required for epimerization. With increasing concentrations of PAPS, the mono-O-sulphated disaccharide unit-IdoA(2-OSO3)-GlcNSO3- was progressively converted into the di-O-sulphated species -IdoA(2-OSO3)-GlcNSO3(6-OSO3)-. A small proportion of the 35S-labelled polysaccharide was found to bind with high affinity to the proteinase inhibitor antithrombin. This proportion increased with increasing concentration of PAPS up to a level corresponding to approximately 1-2% of the total incorporated 35S. The solubilized enzymes thus catalysed all the reactions required for the generation of functional antithrombin-binding sites.
منابع مشابه
Expression of E.coli capsular polysaccharide requires the KfiB protein:A Structural based analysis
Abstract Background and objectives: important virulence factor for many invasive bacterial pathogens of humans. Escherichia coli offer a model system to study the mechanisms by which capsular polysaccharides are synthesized and exported onto the cell surface of bacteria. Biosynthesis of the E consists of the repeat structure -4) GlcA- (1, 4)-GlcNAc- (1-, requires the KfiA,...
متن کاملEscherichia coli K5 heparosan fermentation and improvement by genetic engineering.
N-acetyl heparosan is the precursor for the biosynthesis of the important anticoagulant drug heparin. The E. coli K5 capsular heparosan polysaccharide provides a promising precursor for in vitro chemoenzymatic production of bioengineered heparin. This article explores the improvements of heparosan production for bioengineered heparin by fermentation process engineering and genetic engineering.
متن کاملE. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor.
Heparosan is an acidic polysaccharide natural product, which serves as the critical precursor in heparin biosynthesis and in the chemoenzymatic synthesis of bioengineered heparin. Heparosan is also the capsular polysaccharide of Escherichia coli K5 strain. The current study was focused on the examination of the fermentation of E. coli K5 with the goal of producing heparosan in high yield and vo...
متن کاملOverexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide.
The Escherichia coli K5 capsular polysaccharide (glycosaminoglycan) chains are composed of the repeated disaccharide structure: -GlcAbeta1,4-GlcNAcalpha1,4-(where GlcA is glucuronic acid and GlcNAc is N-acetyl-D-glucosamine). The GlcA, present in most glycosaminoglycans, is donated from UDP-GlcA, which, in turn, is generated from UDP-glucose by the enzyme UDP-glucose dehydrogenase (UDPGDH). The...
متن کاملHighly sulfated K5 Escherichia coli polysaccharide derivatives inhibit respiratory syncytial virus infectivity in cell lines and human tracheal-bronchial histocultures.
Respiratory syncytial virus (RSV) exploits cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The interaction between RSV and HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In this study, selective chemical modification of the Escherichia coli K5 capsular polysaccharide was used to generate a collection of sulfated K5 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 275 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1991